Math 254A Lecture 19 Notes

Daniel Raban

May 10, 2021

1 Deriving van der Waal's Equation (Cont.)

1.1 Recap+partitioning space into boxes lemma

In our current setting we have a box $B_n = \frac{1}{\varepsilon}(R_n \cap \varepsilon \mathbb{Z}^3) = \{1, \ldots, n\}^n$. We have N_n particles in B_n , where $\frac{|B_n|}{N_n} \to \frac{v}{\varepsilon^3}$. The particles are located at $\omega \in \Omega_n = \{0, 1\}^{B_n}$, where $|\omega| = N_n$. We have a "local density map" $D: \Omega_n \to \widetilde{\Omega}_n = \{0, 1/m^3, \ldots, 1\}^{\mathcal{C}_n}$ with

$$D(\omega)_k = \frac{1}{m^3} \sum_{i \in C_k} \omega_i,$$

where $m \mid n$ and $\{C_k : k \in C_n\}$ is a partition of B_n into $(m \times m \times m)$ -boxes and C_n is the set of centers of boxes.

The original energy of $\omega \in \Omega_n$ is

$$\Phi_n^r(\omega) = -\sum_{i,j\in B_n} \varphi^r(\varepsilon(i-j))\omega_i\omega_j,$$

where $\varphi : \mathbb{R}^3 \to [0, \infty)$ is C^1 , symmetric, has support $\subseteq \overline{B_1(0)}$, and $\varphi^r(x) = r^{-3}\varphi(x/r)$ is a dilation for r > 0.

The effective energy of $\omega \in \widetilde{\Omega}_n$ is

$$\widetilde{\Phi}_n^r(\rho) = -m^6 \sum_{k,\ell \in \mathcal{C}_n} \varphi^r(\varepsilon(k-\ell))\rho_k \rho_\ell.$$

We also had the following lemma:

Lemma 1.1. If $D(\omega) = \rho$, then

$$\Phi_n^r(\omega) = \widetilde{\Phi}_n^r(\rho) + O\left(\frac{n^3m}{\varepsilon^2 r}\right)$$

Proof. Last time, we showed that

$$\left| \sum_{i \in C_k, j \in C_\ell} \varphi^r(\varepsilon(i-j)) \omega_i \omega_j \right| \le m^6 O\left(\frac{m^7 \varepsilon}{r^4}\right).$$

Finally, we sum over $k, \ell \in \mathcal{C}_n$:

$$|\Phi_n^r(\omega) - \widetilde{\Phi}_n^r(\rho)| = \left| \sum_{k,\ell \in \mathcal{C}_n} \left[\sum_{i \in C_k, j \in C_\ell} \varphi^r(\varepsilon(i-j)) \omega_i \omega_j - m^6 \varphi^r(\varepsilon(k-\ell)) \rho_k \rho_\ell \right] \right|.$$

Observe that if $\operatorname{dist}(C_k, C_\ell) > r/\varepsilon$, then the expression in the square braces equals 0. How many pairs (k, ℓ) are left? The number of k we can choose first is $(n/m)^3$. Then the number of ℓ s that "hit" k equals $O(r^3/(\varepsilon m^3))$. The total number of nonzero terms is $O\left(\frac{n^3r^3}{\varepsilon^3m^6}\right)$. Now multiply by the previous bound on those terms to get

$$\leq O\left(\frac{n^3m}{\varepsilon^2r}\right).$$

Note that we will let $n, r, m \to \infty$ (with $m = \sqrt{r}$), and then finally let $\varepsilon \to 0$.

1.2 Estimating the size of the partition

Now use this lemma to approximate the partition

$$\begin{split} Z_n^r &= \sum_{\substack{\omega \in \Omega_n \\ |\omega| = N_n}} \exp(-\beta \Phi_n^r(\omega)) \\ &= \sum_{\substack{\rho \in \widetilde{\Omega}_n \\ |\rho| = N_n/m^3}} \sum_{\substack{D(\omega) = \rho \\ \exp(-\beta \widetilde{\Phi}_n^r(\omega)) \cdot \exp\left(O\left(\frac{n^3m}{\varepsilon^2 r}\right)\right)} \\ &= \sum_{\substack{\rho \in \widetilde{\Omega}_n \\ |\rho| = N_n/m^3}} \sum_{\substack{D(\omega) = \rho \\ \exp(-\beta \widetilde{\Phi}_n^r(\omega)) \cdot \exp\left(O\left(\frac{n^3m}{\varepsilon^2 r}\right)\right)} \\ &= \sum_{\substack{\rho \in \widetilde{\Omega}_n \\ |\rho| = N_n/m^3}} |D^{-1}(\{\rho\})| \exp(-\beta \widetilde{\Phi}_n^r(\omega)) \cdot \exp\left(O\left(\frac{n^3m}{\varepsilon^2 r}\right)\right). \end{split}$$

Next, estimate $|D^{-1}(\rho)|$. This equals

$$\prod_{k \in \mathcal{C}_n} (\# \text{ ways to put } m^3 \rho_k \text{ particles into } m^3 \text{ holes}) = \prod_{k \in \mathcal{C}_n} \binom{m^3}{m^3 \rho_k}$$

$$= \prod_{k} e^{m^{3}H(\rho_{k}, 1-\rho_{k})+o(m^{3})}$$
$$= e^{n^{3}[W(\rho)+o(1)]},$$

where

$$W(\rho) := \frac{1}{n^3} \sum_{k \in \mathcal{C}_n} m^3 H(\rho_k, 1 - \rho_k) = \frac{1}{(n/m)^3} \sum_{k \in \mathcal{C}_n} H(\rho_k, 1 - \rho_k).$$

Now insert this new approximation to get

$$\widetilde{Z}_n^r = e^{o(n^3)} \underbrace{\sum_{\substack{\rho \in \widetilde{\Omega}_n \\ |\rho| = N_n/m^3}} \exp(n^3 W(\rho) - \beta \widetilde{\Phi}_n^r(\rho))}_{\widehat{Z}_n^r}.$$

The key observation is that the number of terms here is $\leq (m^3+1)^{n^3/m^3} = \exp O(n^3 \cdot \frac{\log m}{m^3})$. We will use this via the following:

Lemma 1.2. Let $a_i \ge 0$ for all $i \in I$ (with $|I| < \infty$). Then

$$\max_{i} a_i \le \sum_{i \in I} a_i \le |I| \max_{i} a_i.$$

Corollary 1.1.

$$n^{3} \max \left\{ W(\rho) - \frac{\beta}{n^{3}} \widetilde{\Phi}_{n}^{r}(\rho) : \rho \in \widetilde{\Omega}_{n}, |\rho| = \frac{N_{n}}{m^{3}} \right\}$$

$$\leq \log \widetilde{Z}_{n}^{r}$$

$$\leq n^{3} \max \left\{ W(\rho) - \frac{\beta}{n^{3}} \widetilde{\Phi}_{n}^{r}(\rho) : \rho \in \widetilde{\Omega}_{n}, |\rho| = \frac{N_{n}}{m^{3}} \right\} + O\left(n^{3} \cdot \frac{\log m}{m^{3}}\right).$$

Our main remaining task is to understand the maximum of

$$W(\rho) - \frac{\beta}{n^3} \widetilde{\Phi}_n^r(\rho)$$

for $\rho \in \widetilde{\Omega}_n$ such that $|\rho| = N_n/m^3$. Let's unpack this:

$$W(\rho) - \frac{\beta}{n^3} \widetilde{\Phi}_n^r(\rho) = \frac{1}{(n/m)^3} \sum_k H(\rho_k, 1 - \rho_k) + \frac{\beta m^6}{n^3} \sum_{k,\ell} \varphi^r(\varepsilon(k-\ell)) \rho_k \rho_\ell$$
$$= \frac{1}{(n/m)^3} \left[\sum_k H(\rho_k, 1 - \rho_k) + \beta m^3 \sum_{k,\ell} \varphi^r(\varepsilon(k-\ell)) \rho_k \rho_\ell \right]$$

The key idea is to bound the right term above by something with no cross terms. Observe that $\rho_k \rho_\ell \leq \frac{1}{2}(\rho_k^2 + \rho_\ell^2)$ using the AM-GM inequality. Insert this into the second term above:

$$m \sum_{k,\ell} \varphi^r(\varepsilon(k-\ell)) \rho_k \rho_\ell \le m \sum_{k,\ell} \varphi^r(\varepsilon(k-\ell)) \left[\frac{\rho_k^2 + \rho_\ell^2}{2} \right]$$
$$= m^3 \sum_{k,\ell} \rho_k^2 \varphi^r(\varepsilon(k-\ell))$$
$$= \frac{1}{\varepsilon^3} \sum_{k \in \mathcal{C}_n} \rho_k^2 \underbrace{\left[(\varepsilon m)^3 \sum_{\ell \in \mathcal{C}_n} \varphi^r(\varepsilon(k-\ell)) \right]}_{=:\alpha(n,m,r,\varepsilon,k)}.$$

So we will try to maximize

$$\frac{1}{(n/m)^3} \left[\sum_k H(\rho_k, 1 - \rho_k) + \beta m^3 \sum_k \rho_k^2 \cdot \alpha(n, m, r, \varepsilon, k) \right]$$
$$= \frac{1}{(n/m)^3} \sum_{k \in \mathcal{C}_n} \left[H(\rho_k, 1 - \rho_k) + \beta m^3 \cdot \alpha(n, m, r, \varepsilon, k) \rho_k^2 \right]$$

Now consider

$$\alpha(n,m,r,\varepsilon,k) = (\varepsilon m)^3 \sum_{\ell \in \mathcal{C}_n} \varphi(\varepsilon(k-\ell))$$

Ignoring that some k can be on the boundary of the box,

$$\leq (\varepsilon m)^3 \sum_{v \in \varepsilon m \mathbb{Z}^3} \varphi^r(v)$$
$$= (\varepsilon m)^3 \sum_{v \in \varepsilon m \mathbb{Z}^3} \frac{1}{r^3} \varphi(v/r)$$
$$= \frac{\varepsilon^3 m^3}{r^3} \sum_{v \in (\varepsilon m/r) \mathbb{Z}^3} \frac{1}{r^3} \varphi(v).$$

As $r \to \infty$, this will give a Riemann sum for $\int \varphi$. We will plug this back into the previous expression next time.